345 research outputs found

    High-resolution quantification of stress perfusion defects by cardiac magnetic resonance

    Get PDF
    Aims Quantitative stress perfusion cardiac magnetic resonance (CMR) is becoming more widely available, but it is still unclear how to integrate this information into clinical decision-making. Typically, pixel-wise perfusion maps are generated, but diagnostic and prognostic studies have summarized perfusion as just one value per patient or in 16 myocardial segments. In this study, the reporting of quantitative perfusion maps is extended from the standard 16 segments to a high-resolution bullseye. Cut-off thresholds are established for the high-resolution bullseye, and the identified perfusion defects are compared with visual assessment. Methods and results Thirty-four patients with known or suspected coronary artery disease were retrospectively analysed. Visual perfusion defects were contoured on the CMR images and pixel-wise quantitative perfusion maps were generated. Cut-off values were established on the high-resolution bullseye consisting of 1800 points and compared with the per-segment, per-coronary, and per-patient resolution thresholds. Quantitative stress perfusion was significantly lower in visually abnormal pixels, 1.11 (0.75–1.57) vs. 2.35 (1.82–2.9) mL/min/g (Mann–Whitney U test P < 0.001), with an optimal cut-off of 1.72 mL/min/g. This was lower than the segment-wise optimal threshold of 1.92 mL/min/g. The Bland–Altman analysis showed that visual assessment underestimated large perfusion defects compared with the quantification with good agreement for smaller defect burdens. A Dice overlap of 0.68 (0.57–0.78) was found. Conclusion This study introduces a high-resolution bullseye consisting of 1800 points, rather than 16, per patient for reporting quantitative stress perfusion, which may improve sensitivity. Using this representation, the threshold required to identify areas of reduced perfusion is lower than for segmental analysis

    Hybrid positron emission tomography–magnetic resonance of the heart:current state of the art and future applications

    Get PDF
    Hybrid Positron Emission Tomography-Magnetic Resonance (PET-MR) imaging is a novel imaging modality with emerging applications for cardiovascular disease. PET-MR aims to combine the high spatial resolution morphological and functional assessment afforded by MRI with the ability of PET for quantification of metabolism, perfusion and inflammation. The fusion of these two modalities into a single imaging platform not only represents an opportunity to acquire complementary information from a single scan, but also allows motion correction for PET with reduction in ionising radiation. This article presents a brief overview of PET-MR technology followed by a review of the published literature on the clinical cardio-vascular applications of PET and MRI performed separately and with hybrid PET-MR
    • …
    corecore